Playing Super Smash Bros 64 with RL

Varun Jana
Andrew Shen
Ruijie Mao

The challenge: Play against the in-game Al on the Dreamland
stage, using only the screenshots as input. The goal is to knock
the opponent off the stage through attacks.

Why this is an interesting problem: dynamic camera focus and
zoom, sequential game, highly delayed rewards

Knock out! This is what our model sees. Each frame is also
stacked with the past three frames. Otherwise the model
cannot detect velocity.



Approach

PPO (Actor Critic Algorithm):

Actor Policy directly outputs the action, maximizes the gain predicted by the Critic
model. Poor performance due to sample inefficiency.

DQN: Total reward over training

On policy model, more sample efficient because the
model stores all past transitions in a prioritized
experience replay. Trained over 600,000 frames.
Learnt to exploit the in game Al into falling off the
map.




Super Smash Bros. with CNNs

Varun Jana
Ruijie Mao
Andrew Shen

Abstract

As of now, many new improvements in learning
techniques have been developed in artificially in-
telligent game playing. This is especially true
for more retro console games primarily devel-
oped for sub 32-bit/16-bit platforms such as the
SNES, N64, Atari and Sega Genesis. In this pa-
per, we will design and train various agents to
play the classic crossover fighting game, Super
Smash Bros (SSB) (for the N64 version) - where
the winning objective is to knock opponents off
the platform, while also causing damage. The
main challenge in this exploration comes from
the fact that SSB features a diverse array of move
sets, multiple components to recognise and react
to, especially with substantial noise in the data
due to rapidly changing camera angles, zoom and
in-game animations. We present our findings and
an analysis of the different agents and variations.

1. Introduction

Super Smash Bros 64 is a fight game that revolves around
knocking the opponent off the game stage. Dealing dam-
age in SSB increases how far the opponent will be knocked
by your attacks. So SSB players have to uniquely balance
between dealing damage to the opponent player and de-
livering the right attack that will knock off the opponent.
Movement and positioning is also very important in the
game, most players have special moves to recover after be-
ing knocked into the air.

Our project focuses on designing a reinforcement learning
agent for Super Smash Bros. Our model only uses screen-
shots of the game, similar to how an agent would play. Our
aim was to show that a reinforcement learning agent can
learn to play SSB at a decent level from scratch. This is
a novel problem; previous attempts to solve the SSB game
have used feature engineered RAM game states from the

University of Pennsylvania, CIS 419/519 Course Project.
Copyright ©2020 by Varun Jana, Ruijie Mao, and Andrew Shen.

JVARUN @ SEAS.UPENN.EDU
DREAMFLY @ SEAS.UPENN.EDU
ANDSHEN @ SEAS.UPENN.EDU

emulator (2017). We show our results from models using
the Proximal Policy Optimization algorithm and Deep Q-
Learning algorithm (DQN).

2. Background/Related Work
2.1. Q-Learning and MDP

Q Learning is one of the most common method of perform-
ing RL. Basically, how it works is that during each state,
the model will calculate a Q function. Such Q function in-
dicates the expected reward corresponding to each state and
each action. In this case, we are able to update the Q func-
tion by dynamic programming using the formula below:

Q(S,a) =1+ ymaxQ(S’,a’)

Where r is the reward and S’, a’ is the state and action in
the previous state. Therefore, the current Q value is ob-
tained by the sum of the current reward (r) and the previous
reward.

2.2. Deep Q-learning Modifications

In the Deep Q learning, instead of storing Q values for each
state we approximate the Q value through a neural network.
We optimize the network through minimizing the differ-
ence between estimated

Q(St, ar)
and the target value
7+ ymazQ(Sy, at)

DQN, in practice, struggles with instability issues and Q
values are prone to explode to very high values. One
method of stablizing training is to fix the target Q value by
using a fixed old version of the agent (Mnih et al., 2013).

DQN also suffers from high correlation in the inputs when
training during game-play. A common solution is to store
past experiences in a experience replay buffer and train us-
ing mini-batches of past transitions, and this modification
is implemented for our model as well.



Jana, Mao, Shen

2.3. Proximal Policy Optimization

PPO is an Actor Critic algorithm. It consists of two models,
the actor takes in the current state of the game and chooses
an action. That action is passed into the environment in
exchange for the reward and next state. This is repeated
for each episode. The sequence of rewards is used by the
critic to estimate the gain for each step. The critic model
minimizes

JC(St) = (Gt — V(St)2

Actor Critic algorithms calculate the advantage for each
transition

At = Gt — Vﬂ(St)

The actor model is then trained to maximize the probability
of taking actions that have high advantage.

The PPO model is also extended by a clipping constraint
that prevents the model from deviating too far from it’s cur-
rent policy. It does this by calculating a probability ratio

- 7T9(G/t|8t)
pi(6) = moold(a|st)

Then the clipped objective is maximized.

JCLIP(H) = E'[min(clip(ps(0), 1e,1 + €) A" ps(0) A")]

+BH (mo(s1))

Where H is the entropy of the action distribution, weighted
by hyperparameter 3.

3. Gameplay Framework
3.1. Emulator

Super Smash Bros 64 does not run on Atari, so we had
to use an nintendo 64 emulator to train our agent. At the
same time we wanted our emulator to be compatible with
the OpenAl gym framework.

So we chose to use the Mupen64 emulator, which provided
us with rendered pixel data as output and has a gym en-
vironment wrapper implementation available online (Zier,
2019). We were able to set up the emulator in a stable en-
vironment using docker containerization.

The emulator took continuous valued inputs for joystick
controls. In order to reduce the complexity of our model,
we discretized the joystick movements into 9 directions.
Combined, the total action set consisted of the following
moves:

H Move Mapping Key H
Jump C
Weak Attack A
Strong Attack Analog right + A
Shield X
Grab enemy Z+A
Special Attack 1 B
Special Attack 2 Analog up + B
Special Attack 3 | Analog down + B
Move around Analog stick

3.2. Data Collection

For training our reinforcement learning agents we recorded
the frames from our agent’s game-play, which we stored in
an experience replay buffer. We recorded all of our games
on the Dream Land stage. Because each Smash game is
highly different, we wanted to focus on training our agent
to play well on one stage.

4. Approach
4.1. Image Preprocessing

Decrease resolution to 84 x 84. Each imagine is in
grayscale. Each frame is stacked together with the past
three frames into 84 x 84 x 4 tensors.

4.1.1. PAST TIMESTEPS (STACKING)

Each frame is stacked together with the past three frames
into 84 x 84 x 4 tensors. This allows computing object
velocity since the algorithm has ‘access’ to the previous 4
frames (though this is still very difficult due to the velocity
of the camera angle and rapidly changing camera zoom.)

4.2. Feature Generation

The architecture consists of 3 CNN layers and 1 fully con-
nected layer to process the image data and generate around
1000 features. The feature space is very complex due to
the enormous number of things that the agent may need
to detect (eg. enemy movement, location on island, agent
velocity). It also another fully connected layer to map the
1000 features into Q value predictions.

4.3. Deep Reinforcement Learning

We are using a fixed model to generate a Q values and
use such value to generate our targets. Then we apply
such target as our labels to calculate the Q value as our
labels (fixed target) so that we run 50 iterations each time
(propstep) to train the network and then copy the trained
model to our target model.



Jana, Mao, Shen

Algorithm 1 DQN
Initialize model and target model.
for : = 1 to maxstep do
select a; = argmax@Q(¢(St), a; )
use the targetmodel to get the target Q value as our
label based on our past experience
calculate current Q value through Q'(S,a) = r +
ymazQ(S’, a’)
use model to get the trained Q value
minimize mean square error loss between Q’ and Q
end for

Algorithm 2 PPO Algorithm

Input: policy parameters 6, clipping threshold e
for k=0,1,2...do
Collect trajectories Dy, using policy m(6y,)

ok (at]st)
mor—10ld(at|st)

Maximize objective JCOLIE(9) =
Et[min(clip(ps(0), 1€, 1 + €) At ps (6) AY))
By taking 4 steps of SGD (via Adam)

end for

Compute advantage A =

4.3.1. PPO

We use the PPO (Policy Proximal Optimization) strategy
to evaluate our data. That is, we use the neutral network to
predict the likelihood of each action within each state and
we increase the likelihood of the good actions (the actions
with higher reward) and decrease likelihood of the bad ac-
tions.

5. Discussion and Results
5.1. PPO

PPO is an online learning algorithm, which means that the
optimizer uses actions from the current policy. PPO has
produced state of the art results (Schulman et al., 2017) in
various Atari games. However, PPO has mostly been ap-
plied to games with raw RAM states. Learning from visual
data is a more complex task and requires heavy computa-
tion. In this domain PPO often performs less well than off
policy methods like DQN that has higher sample efficiency.

Because PPO performs the update step at the end of
episodes, we limited episodes to 300 time steps to increase
update frequency. Unlike other methods, PPO is relatively
insensitive to hyperparameter choices. So we only per-
formed basic hyperparameter search around standard val-
ues. We evaluated hyperparameters after 30,000 frames.

We trained with the best hyperparameters, learning rate =

Figure 1. Accumulated reward

PPO Agent

-100

-125

—150

Accumulated Reward

-175

—200

0 200 400 600 8O0 1000 1200 1400
Episode

Reward-Episodes

Reward

1000

50 200 %0 30
#Episodes

Figure 2. DQN with prioritized experience replay

0.002, € = 0.2, epochs=4 for 420,000 frames. The agent
performed very erratically and barely better than random.

5.2.DQN

The DQN algorithm allows off policy training on past tran-
sitions. This helped increase learning speed. Our biggest
bottleneck in training was the emulator, which could only
run on CPU. Because DQN allowed us to train on the same
transition multiple times on GPU, we achieved better sam-
ple efficiency.

We implemented DQN with an experience replay and fixed
target model as described in (Mnih et al., 2013). In ad-
dition, we implemented a prioritized experience replay
(Schaul et al., 2015), which sampled important transitions
more frequently. Without prioritized replay, we noticed
that our agent did not learn to associate jumping at the edge
of the map with negative rewards because the reward signal
from falling off the edge of the map comes after a sequence
of 20 frames. With prioritized replay, the agent better dealt
with the delayed reward signals.



Jana, Mao, Shen

Table 1: Direct comparison of models (reward is averaged
over last 4000 frames)

H Algorithm ‘ Accumulated Rew. ‘ std H
PPO -534 51
DON 433 39
DQN + Prioritized Replay -223 26

6. Conclusions and Future Work

Learning to play Super Smash Bros from scratch is a very
challenging reinforcement learning problem. The combi-
nation of dynamic camera zoom, sequential game-play and
delayed rewards makes SSB a good benchmark for visual
only reinforcement learning algorithms.

Our project have shown that PPO and DQN with prioritized
replay can learn the basics of the game. We believe that
enhancing DQN with additional tricks like rainbow DQN
(Hessel et al., 2017) will improve results further. Other fu-
ture directions include novel zoom-invariant architectures
and RNN to capture the sequential non MPD nature of the
game.

References

Firoiu, Vlad, Whitney, William F., and Tenenbaum,
Joshua B. Beating the world’s best at super smash bros.
with deep reinforcement learning, 2017.

Hessel, Matteo, Modayil, Joseph, van Hasselt, Hado,
Schaul, Tom, Ostrovski, Georg, Dabney, Will, Horgan,
Dan, Piot, Bilal, Azar, Mohammad, and Silver, David.
Rainbow: Combining improvements in deep reinforce-
ment learning, 2017.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Graves, Alex, Antonoglou, Ioannis, Wierstra, Daan, and
Riedmiller, Martin. Playing atari with deep reinforce-
ment learning, 2013.

Schaul, Tom, Quan, John, Antonoglou, Ioannis, and Silver,
David. Prioritized experience replay, 2015.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Rad-
ford, Alec, and Klimov, Oleg. Proximal policy optimiza-
tion algorithms, 2017.

Zier, Brian. Gym mupen64plus. https:
//github.com/bzier/gym-mupen6dplus/
commits/master, 2019.


https://github.com/bzier/gym-mupen64plus/commits/master
https://github.com/bzier/gym-mupen64plus/commits/master
https://github.com/bzier/gym-mupen64plus/commits/master

